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Motivation
Tobias Dyckerhoff

The general outline of the seminar will be as follows:

I A∞-categories – 3 talks

II Fukaya categories – 3 talks

III Seidel-Fukaya categories – 3 talks

IV Additional topics – 4 talks

• Khovanov’s tangle/knot invariants

• Fukaya Categories of surfaces and staility conditions

In this introductory talk, we will attempt to provide basic motiva-

tion for the first three sections.

A∞ Spaces

For a pointed topological space (X, ∗), we can form the loop space

Y := Map
(
(S1, ∗), (X, ∗)

)
. 1 We can then form a composition opera- 1 The general theory discussed in this

section is due to Stasheff.tion, as in the construction of the fundamental group2.
2 Notice that in the normal construc-

tion of the fundamental group, we
would immediately pass to homo-

topy classes of loops, rather than
considering the full space Y .

0 1

m(a, b)
1
2

a b
=

this composition law can be represented as an element m2 ∈ Map(Y 2, Y ).

Ideally, m2 would satisfy the most basic of properties: associativity.

However, as the diagram below shows, this clearly fails.

0 1
1
2

3
4

a b c
6=

0 1
1
2

1
4

a b c

This is where quotienting by the equivalence relation defined by ho-

motopy would give associativity, however, if we don’t want to lose

information we can instead choose a homotopy

m2(a,m2(b, c))
m3−→ m2(m2(a, b), c)
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which can be seen as a map m3 : I → Map(Y 3, Y ), such that

∂(m3) = m2(m2 × 1)−m2(1×m2)

If we begin with four loops, we can look at all possible compo-

sitions, and repeat this construction, ie, for a, b, c, d ∈ Y , we get

((ab)c)d (ab)(cd)

(a(bc))d) a(b(cd))

((ab)c)d)

m4

m3(m2 × 1× 1)

m2(m3 × 1) m3(1× 1×m2)

m2(1×m2)m3(1×m2 × 1)

The boundary of the figure may be viewed as a map S1 → Map(Y 4, Y ),

and so a choice of m4 can be seen as a map m4 : D2 → Map(Y 4, Y ),

such that the following diagram commutes.3 3 As before, we can express this in
the form of an equation, ie, ∂m4 =

m3(m2 × 1× 1− 1×m2 × 1 + 1× 1×
m2)−m2(m3 × 1 + 1×m3)

S1 //

��

Map(Y 4, Y )

D2

m4

99

Continuing this process, we find that the high coherence conditions

mi are defined by maps of balls (more precisely, of convex polytopes,

the so called ‘Stasheff Polytopes’) into Map(Y i, Y ).

Definition. An A∞-space is a topological space Y equipped with

operations

mn : Kn → Map(Y n, Y )

satisfying the equations

∂(m3) = m2(m2 × 1)−m2(1×m2)

∂(m4) = m3(m2 × 1× 1− 1×m2 × 1 + 1× 1×m2)

−m2(m3 × 1 + 1×m3)

...
...

...

We have the example, of course, of Y = Ω∗X, but the following

theorem tells us in some sense that this is the only example.

Theorem (Stasheff). Let Y be an A∞-space such that (π0(Y ),m2)

is a group, then there exists a pointed space (X, ∗) and a homotopy

equivalence Y ∼ Ω∗X as A∞-spaces.

This construction can be generalized. A linearized version is called

an A∞-algebra and a multi=object version is called an A∞-category.
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Fukaya Categories

We now begin from the perspective of Morse Theory. Let X be a

smooth n-dimensional closed manifold, and consider f : X → R a

morse function4. 4 That is, a smooth function with only
non-degenerate critical points, whose

set is denoted by crit(f).
Locally around p ∈ crit(f), we can express f as

f = x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

n

The number of negative signs appearing in that expression depends

only on p, and we call it index(p).

From Morse Theory, we know that there exists a CW-structure on

X with5 5 For example, we can take the pro-

jection π : S1 → R. This has two
critical points, as illustrated below.

→

p1

p2

p1 has index 0, and p2 has index 1,

so we expect to find a cell structure

for S1 containing a single 0-cell and a
single 1-cell. However, this is precisely

the standard cell structure for the

circle.

{ cells of
dimension k} ∼=

{
critical points

of index k

}
This tells us that there exists a chain complex freely generated by

critical points which computes H∗(X;R). In turn, this implies that

# (crit points of dimk) ≥ bk(X)

where bk is the kth betti number.

Now, we want to tie this example to the formalism of sympectic

geometry, whence Fukaya categories arise. We do this loosely following

a maxim (attributed to Weinstein).

The Lagrangian Creed: Everything is a Lagrangian Submani-

fold.

Example. For a manifold X as above, the cotangent bundle T ∗X is a

symplectic manifold with form ω given locally by

n∑
i=1

dxi ∧ dξi

• The zero section L0 := X ⊂ T ∗X is a lagrangian submanifold.

• for f a smooth function on X, df ∈ Γ(T ∗X) ie df is a section

df : X → T ∗X

The image L1 := im(df) ⊂ T ∗X is a lagrangian submanifold.

We also have L0 ∩ L1 = crit(f), and that these intersections are

transverse when the critical points are non-degenerate.

Having moved to the formlism of symplectic geometry, we have the

following ‘theorem’
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Theorem (Floer). Let L1 and L0 be compact transverse Lagrangians

in a symplectic manifold (M,ω) (+ various technical conditions), then

there exists a natural complex

CF (L0, L1)

generated freely by L0 ∩ L1 such that

1. H∗(CF (L0, L1)) is invariant under hamiltonian isotopies6. 6 Recall that, given a smooth function

(the ‘Hamiltonian function’) F : M →
R, we get a differential equation

ω(Xf ,−) = df

whose unique solution Xf is refered to

as the Hamiltonian vector field of f .
Then, we can define the Hamiltonian

isotopy (or Hamiltonian flow) of f to

be φft , the unique flow along Xf .

2. If L1 is Hamiltonian isotopic to L0, then

H∗(CF (L0, L1)) ∼= H∗(L0)

And finally, we have

Theorem (Fukaya). There exists an A∞-category Fuk(Mω) with

objects given by Lagrangian submanifolds + technical decorations, and

morphism complexes CF (L0, L1)

Seidel-Fukaya Categories

Let T be a triangulated category subject to the requirements that

Hom∗(E,F ) be finite dimensional for all objects E,F of T , and that T

be linear over k = k.

Definition. A collection of objects (E1, E2, . . . En) in T is called

exceptional if

1. Hom∗(Ei, Ei) = k · id for every i

2. Hom∗(Ei, Ej) = 0 for every i > j

It is called full if

〈E1, · · ·En〉 = T

On such expectionally collections, we have the operation of Muta-

tion, which preserves exceptional-ness. For any 1 ≤ i < n mutation is

given by

(E1, E2, . . . Ei, Ei+1, . . . En) 7→ (E1, . . . TEi(Ei+1), Ei, . . . En)

Where TEi is given by

TEi(Ei+1) = cone (Hom∗(Ei, Ei+1)⊗ Ei → Ei+1)

That is, the cone over the evaluation map.

By sending the relevant twist
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to the mutation on i, i + 1, we find that the set of exceptional collec-

tions of length n comes equipped with an action of the Artin Braid

Group.

Example.

T = Db(An-mod) = 〈E1 → E2 → · · · → En〉
↓

〈E1 ← TE1
(E2)→ E3 → · · · → En〉

Applying once again the Lagrangian Creed, we translate this into

‘0-dimensional symplectic geometry’

We start with a pointed disk with n marked points M , and choose

loops li represenatives of π1(D \M) coresponding to curves γi from ∗
to i.

∗

l1 l2

l3

γ1

γ3

γ2

From here, we can construct a ramified cover of degree n + 1 by

specifying monodromy:

li 7→ (1, i) ∈ Sn+1 y f−1(∗)

Schematically, we get something like:

∗

∗n+ 1

∗3

∗2

∗1

...

↓ f

∼=

∼=

D′

D

and we have that f−1(∗) is a 0-dimensional symplectic manifold, with

{1, 2}, {1, 3}, . . . {1, n+ 1} ⊂ f−1(∗)

lagrangian 0-spheres which we will call vanishing cycles.
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Theorem (Seidel).

〈{1, 2}, {1, 3}, . . . {1, n+ 1}〉 = Fuk(f) ∼= Db(An-mod)

and {1, 2}, {1, 3}, . . . {1, n + 1} is a distinguished basis of vanishing

cycles corresponding to {γi}.

The braid group action is given by

∗ ∗

γ1 γ2 γ1

γ27→

Seidel’s theory generalizes this: It claims that this works for any

(reasonable) symplectic lefschetz fibration f : X → D.



Part I

A∞ Categories



A∞ Spaces
Michael Brown

The rough goal of this talk is to explain and provide a proof for the

theorem of Stasheff:

Theorem (Stasheff). Let X be a (pointed) space. Then X is a loop

space if and only if X is an A∞-space and π0(X) is a group under the

monoid structure induced by the A∞-structure.

Before we begin, we fix some notation7: 7 Here ‘non-degenerate base point’

means that the inclusion ∗ → X is
a cofibration. More precisely, using

the standard model structure, X is a

retract of a CW complex.

U := Category of compactly generated
Hausdorff Spaces

T := Category of spaces in U
with non-degenerate base point

Definition. An operad C consists of spaces C(j) ∈ U for every j ≥ 0,

where C(0) = ∗, along with the data:

1. Continuous maps

γ : C(k)× C(j1)× · · · × C(jk)→ C(j)

where j =
∑
ji, such that the following condition holds:

Given c ∈ C(k), ds ∈ C(js), and ct ∈ C(jt),

γ(γ(c; d1, . . . , dk); c1, . . . , cj) = γ(c; f1, . . . , fk) where

fs = γ(ds; cj1+···+js−1+1, . . . , cj1+···+js)

and where fs = ∗ if js = 0.8 8 An operad can be more productively
thought of as a set of ‘black boxes’
representing n-ary operations. In

this sense, the condition 1. can be

diagrammatrically represented (in an
example) by:

c

d1 d2

c3 c4c2c1

+

=

c

d1 d2

c3 c4c2c1

+

2. An identity element 1 ∈ C(1) st γ(1;x) = x for all x ∈ C(k) and for

any k, and γ(c; 1, . . . , 1) = c for all c ∈ C(k) and for any k.

3. A right action of the symmetric group Sn on C(k) for every k ≥ 0

such that for c ∈ C(k), ds ∈ C(js), σ ∈ Sk and τs ∈ Sjs :

i)

γ(cσ; d1, . . . , dk) = γ(c; dσ−1(1), . . . , dσ−1(k))

where σ(j1, . . . , jk) ∈ Sj permutes the k blocks of letters

determined by the partition j1, . . . , jk) of j in the same way

that σ permutes k letters.
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ii) γ(c; d1τ1, . . . , dkτk) = γ(c; d1, . . . , dk)(τ1 × · · · × τk)

Definition. A morphism C → C′ of operads is a collection of θj :

C(j) → C′(j) sending 1 ∈ C(1) to 1 ∈ C′(1), Sk equivariant for all k,

and compatible with γ maps.

Example. Let (X, ∗) ∈ T . The endomorphism operad EX is given

by:9 9 Map(Xj , X) is here taken to be the
pointed topological space of continu-

ous based maps in the compact-open

topology

EX(j) = Map(Xj , X)

with γ maps defined by

γ(f ; g1, . . . , gk) = f ◦ (g1 × · · · × gk)

the identity element is idX ∈ EX(1) and the actions permute the

components of the product, i.e. for σ ∈ Sk and g ∈ EX

(gσ)(x1, . . . , xk) = g(xσ−1(1), . . . , xσ−1(k))

Fact. EX is an operad.

Definition. An action of an operad C on a space X is a morphism

C → EX

We can use this terminology to rephrase the Stasheff theorem from

the beginning.

Theorem (May, 1972 (Boardman-Vogt, 1973)). There exist operads

Cn for all 1 ≤ n ≤ ∞ such that if X is path connected, then X is a Cn
space if and only if X is an n-fold loop space.

Definition. An operad C is an A∞ operad if π0(C(j)) ∼= Sj
10 and 10 That is, π0(C(j)) is a free transitive

Sj space (a torsor).each path component of C(j) is contractible11
11 Technically, one also needs addi-
tional cofibrancy conditions in this

definition, since otherwise the asso-

ciative operad would be considered
an A∞ operad (the associative op-

erad has C(j) = Sj with the discrete

topology). However, our chosen A∞
operad, the little disks operad, satis-

fies these additional conditions, and

so it is sufficient to work with this
example.

An A∞ Space is a space with an action of an A∞ operad.

Definition. A Little Interval is a function

c : I → I

of the form c(t) = (y − x)t+ x for some 0 ≤ x < y ≤ 1.

Definition. The Little Intervals Operad L (= C1 from the theorem of

May), consists of spaces L(n) of ordered n-tuples (c1, . . . , cn) of little

intervals such that the collection {ci(I◦)}ni=1 are mutually disjoint.

The action of Sn on L(n) permutes the little intervals. The identity in

L(a) is idI , and the map

γ : L(k)× L(j1)× · · · × L(jk)→ L(j)

takes collections (c1, . . . , ck) ∈ L(k) and (bi1, . . . , b
i
ji

) ∈ L(ji) and sends

them to the collection

(c1 ◦ b11, c1 ◦ b12, . . . , c1 ◦ b1j1 , . . . , ck ◦ b
k
1 , . . . , ck ◦ bkjk) ∈ L(j)
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This is, in fact, an A∞ operad. One can then take the definition of

an A∞ space to be a space with an L-action.

Remark. The higher Cn from May’s theorem are called the little n-

cube operads. Spaces over them are called En-spaces. While we won’t

delve into the construction here (it is very similar to the little disks

operad), schematically, we get something like:

We can also retrieve the ‘homotopy associativity conditions’ from

the previous talk from an L action. Suppose

θ : L → EX

is a morphism. Then we have data θ2 : L(2) → Map(X2, X), so that

for any z ∈ L(2) we get a ‘multiplication’ θ2(z) on the space X.

If z1 and z2 are connected by a path in L(2), this yields a homo-

topy from θ2(z1) to θ2(z2). However, we also have that

π0(L(2)) ∼= S2

θ2(z.(1 2)) = θ2(z).(1 2)

θ2(z.(1 2))(x1, x2) = θ2(z)(x2, x1)

So we can see that, in general, there is no reason to expect our multi-

plication to be homotopy commutative.

However, for associativity, it works out. For ease of writing, let us

take c ∈ L(2) that preserves the order of the intervals. We can see that

there is a path from γ(c; c, 1) to γ(c; 1, c) in L(3)12. We can also find 12 Both preserve the order, so it isn’t
hard to show.a homotopy unit: γ(c; 1, ∗) and γ(c; ∗, 1) are both connected by a path

to 1 ∈ L(1).

Fact. If Y ∈ T , then ΩY is an L-space.

This is relatively easy to see, using many of the same ideas and

constructions as were sketched in the first section of the previous talk.

The hard direction to prove in May’s theorem is the converse.

Proof (sketch). Given a monad C in T , a functor F over C, and an

algebra X over C, one can construct a simplicial space B•(F,C,X).
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The geometric realization of B•(F,C,X) is called the bar construction

of the triple (F,C,X) (See chapter 9 of May’s book, listed in the

references).

It is known that an operad C induces a monad, and a C-space yields

an algebra over this monad13. So, suppose that X is path-connected 13 As an example of this generalized

bar construction, we first note that if

we think of F and C as endofunctors,
then

Bn(F,C,X) = FCnX

So, if A is an associative algebra over
k, then

A⊗k − : Mod(A)→ Mod(A)

this is a monad in Mod(A), and a

module M over A is an algebra over
this monad. So, via Dold-Kan, we get

B•(A,A,M)→ Classical Bar Resolution

and has an action of L, then we have the induced monad, L = ΩS the

loop space of the suspension, and the space X. So we can form

X
HE∼= |B•(L,L,X)|
HE∼= |B•(ΩS,L,X)|
HE∼= Ω |B•(S,L,X)|



A∞ Algebras and A∞ Categories
Walker Stern

The first observation to make in defining A∞ algebras is that there is

a model for the (non-sigma) topological A∞-operad given by

ATop∞ (n) = Kn

where Kn is the nth Stasheff Polytope. Importantly, we can give a

very natural cell structure on the Kn, with 0-cells representing trees in

the following way:

ATop∞ (2) =

ATop∞ (3) =

ATop∞ (4) =

So we see that, in this cell structure, Kn has precisely one n−2-cell.
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We can then define a (non-unital) non-symmetric operad in chain

complexes by

Adg∞(n) := Ccell• (ATop∞ (n) n ≥ 2

So, for a complex (V, dV ) letting the endomorphism operad14 be 14 The differential on EndV (n) is

given by the formula

∂V (f) = dV ◦ f − (−1)|f |f ◦ dV⊗nEndV (n) :=
Operad of maps of graded VS’s
V ⊗n→V graded by degree

Looking at the first few terms, we notice that each map Adg∞(n) →
EndV amounts to selecting a single map mn of degree n− 2, subject to

some conditions. So we can define:

Definition. An A∞-algebra is a Chain complex V with differential

m1 and maps (for n ≥ 2)

mn : V n → V

of degree n− 2 such that∑
p+q+r=n

(−1)p+qrmk ◦ (id⊗p ⊗mq ⊗ id⊗r) = 0

where k = p+1+r. Alternately, we can express this condition in terms

of the differential ∂V on EndV :

∂V (mn) = −
∑

n=p+q+r
k>1 q>1

(−1)p+qrmk ◦ (id⊗p ⊗mq ⊗ id⊗r)

It is worth noting at this juncture, that one can choose the con-

vention that differentials move upwards (cohomological convention)

instead of the convention chosen here (homological convention). The

main material effect of doing so is that in the cohomological conven-

tion, mn is of degree 2− n.

Example. The singular chain complex Csing• (X) of an A∞-space X is

an A∞-algebra.

More trivially, we can include:

Assoc. Alg ⊂ DGA ⊂ A∞ Alg

in which case mn = 0 for all n ≥ 3.

Definition. A morphism of A∞-algebras f : A → B is a collection of

graded vector space maps

fn : A⊗n → B

of degree n− 1, such that

1. f1m1 = m1f1 that is, f1 is a morphism of complexes.
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2. for n ≥ 1∑
p+q+r

(−1)p+qrfk(id⊗pA ⊗m
A
q ⊗id⊗rA )−

∑
j≥2

i1+···+ij=n

(−1)εmB
k (fi1 , · · · , fik) = ∂(fn)

We call f a quasi-isomorphism if f1 is a quasi-isomorphism, and we

call f strict if fi = 0 for every i 6= 1.

The composite of two morphisms is given by

(f ◦ g)n =
∑

(−1)εfr ◦ (gi1 ⊗ · · · ⊗ gir )

The Homotopy Transfer Theorem

Theorem (Kadeishvili, 1980). Let

(A, dA) (V, dV )
p

i
h

be a retract, ie

idA − ip = dah+ hda

pi = idV

If (A, dA) is a DGA, then (V, dV ) inherits an A∞-algebra structure

such that i and p are A∞ quasi-isomorphisms.

The basic idea of the proof is as follows. We have a natural idea for

what the ‘multiplication’ m2 should be:

m2 = p ◦ µ ◦ (i, i) = µ
ii

p

This isn’t associative, but forming the associator:

pµ(ipµ(i, i), i)− pµ(i, ipµ(i, i)

we see that the obstruction to associativity is, in some sense, the dif-

ference between ip and idA. We have a homotopy between these two

elements, and we try using this in place of ip.

m3 = pµ(hµ(i, i), i)− pµ(i, hµ(i, i))

Or, graphically

µ

i µ

i i

p

h µ

iµ

ii

p

h−
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We can compute the boundary, yielding:

∂(m3) = −m2(m2, id) +m2 ◦ (id,m2)

Iterating this construction15 yields the desired structure. 15 More precisely, to each tree given
by concatenating multiplications, we

assign a copy of µ for every vertex,

h for every interal edge, i for every
incoming half-edge, and p for the

outgoing half-edge. For a tree T call

this map mT . Then mn is given by:

mn =
∑

T∈vertices(Kn)

±mT

There is a stronger version of Kadeishvili’s theorem16:

16 Actually, there is one even stronger
than this, which asserts the same re-

sult in the case of a general homotopy

equivalence.

Theorem (Kadeishvili). Let

(A, dA) (V, dV )
p

i
h

be a homotopy retract, ie

idA − ip = dah+ hda

pi = idV

If (A, dA) is an A∞-algebra, then (V, dV ) inherits an A∞-algebra

structure {mn}n≥2 such that i extends to an A∞ quasi-isomorphism.

Definition. We call an A∞-algebra with m1 = 0 minimal. We call

H∗(A•) with the A∞-structure inherited from the theorem a minimal

model for A.

There are topological versions of this theorem as well, but even in

this algebraic form, it can be given topological meaning.

Definition. Let (A•, d) be a DGA. x, y, z ∈ H∗(A•, d) such that

x ∪ y = 0 = y ∪ z

This implies that there exist a, b ∈ A• such that

da = x ∪ y(−1)|x|

db = y ∪ z(−1)|y|

So we define the Triple Massey Product 17 17 More generally, one can define

n-ary operations on cohomology
elements satisfying some (slightly

more esoteric) conditions 〈−, · · · ,−〉n.
〈x, y, z〉3 = (−1)|x|x ∪ b+ (−1)|a|a ∪ z

Lemma. Up to a sign,

〈x, y, z〉3 = m3(x, y, z)

where defined.18 18 And, moreover, we actually have

〈−, · · · ,−〉n = ±mnProof. We write An = Bn ⊕ Hn(A•) ⊕ Bn−1 (coefficients assumed to

be in a field). Then we can write a homotopy explicitly treating i as

the inclusion on to the factor Hn.

h : An → An + 1

h =

0 on Hn ⊕Bn−1

id on Bn
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Given x, y, z as in the definition, we can choose a and b to have the

additional property such that hd(a) = a and hd(b). Then

m3(x, y, z) = −pµ(i(x), hµ(i(y), i(z))) + pµ(hµ(i(x), i(y)), i(z))

= −x ∪ h(y ∪ z) + h(x ∪ y) ∪ z
= x ∪ (−1)|y|x ∪ h(db) + (−1)|x|h(da) ∪ z
= x ∪ (−1)|y|x ∪ b+ (−1)|x|b ∪ z
= (−1)|x|+|y|〈x, y, z〉3

The massey products also admit some geometric intuition which is

lacking in the construction of the mi
19. 19 As the conventional example, we

have the Borromean Rings, three

linked circles embedded into 3-space:

If we embed the borromean rings

into S3, and take the complement
S3 \ B, we get three generators of the

first cohomology group corresponding

to the three rings. However, since
their pairwise linking numbers are

zero, their cup products are as well.

However, the third massey product of
these three generators is non-zero, and

in some sense represents a ”three-fold

linking number”.

A∞ Categories

An A∞-category can be thought of as generalization of the structure

we observed in A∞-algebras to a multi-object system, to wit:

Definition. A non-unital A∞ Category A consists of the following

data:

• A set of objects Ob(A)

• A graded vector space homA(X0, X1) for every pair of objects X0

X1.

• Composition maps for all d ≥ 1

µdA : homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1)→ homA(X0, Xd)

of degree 2− d such that∑
m,n

(−1)�nµd−m+1
A (ad, . . . , an+m+1, µ

m
A (an+m, . . . , an+1), an, . . . , a0) = 0

where the sum is taken over 1 ≤ m ≤ d and 0 ≤ n ≤ d−m and the

symbol �n = |a1|+ · · ·+ |an| − n.

Definition. A non-unital A∞-functor between 2 non-unital A∞-

categories A and B is a map

F : Ob(A)→ Ob(B)

and multilinear maps of degree 1− d for every d ≥ 1

Fd : homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1)→ homB(FX0,FXd)

such that∑
r≥1

∑
s1+···+sr=d

µrB(Fsr (ad, . . . , ad−sr+1, · · · ,Fs1(as1 , . . . , a1))

=
∑
m,n

(−1)�nFd−m+1 (ad, . . . , an+m+1, µ
m
A (an+m, . . . , an+1), an, . . . , a0)
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The composition of functors is given by

(G ◦ F)d(ad, · · · , a1)

=
∑
r

∑
s1+···+sr=d

Gr (Fsr (ad, . . . , ad−sr+1), . . . ,Fs1(as1 , . . . , a1))

Remark. The collection of non-unital functors A → B, forms a non-

unital A∞ category nu-fun(A,B).



Triangulated A∞ Categories
Gustavo Jasso

Motivation

Fix a field k, and let A be a k-category with one object20. We have 20 That is, a k-algebra

the Yoneda embedding

A ↪→ modA

into the k-category of (right) A modules. This is abelian, and in some

sense a ‘nice’ category to embed into. However, we would like the

functor Ext`A(−,M) to be representable, and it is not.

We can fix this issue by taking a further embedding

modA ↪→ D(A)

into the derived category of A. In this setting we then have that

Ext`A(−,M) ∼= HomD(A)(−,M [`])|modA

Problem. modA is a k-category with the property of being abelian,

whereas D(A) is a k-category with the structure of a triangulation.

Fundamental observation: D(A) ∼= H0(a triangulated A∞ cat)

and Dperf(A) ∼= H0(TwA) up to idempotent completion, where TwA
is the triangulated A∞ category of twisted A-modules.

A∞ Categories and A∞ Functors

Recall. From the last talk: A non-unital A∞ category A consists of

the following data:

• A set of objects Ob(A)

• A graded vector space homA(X0, X1) for every pair of objects X0

X1.

• Composition maps for all d ≥ 1

µdA : homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1)→ homA(X0, Xd)
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of degree 2− d such that∑
m,n

(−1)�nµd−m+1
A (ad, . . . , an+m+1, µ

m
A (an+m, . . . , an+1), an, . . . , a0) = 0

where the sum is taken over 1 ≤ m ≤ d and 0 ≤ n ≤ d−m and the

symbol �n = |a1|+ · · ·+ |an| − n.

We can use this to provide other interesting constructions:

Definition. The opposite category of A, Aopp, is given by

• Ob(Aopp) = Ob(A)

• homAopp(X0, X1) = homA(X1, X0)

• µdAopp(ad, . . . , a1) = (−1)�dµdA(a1, . . . , ad)

Definition. The cohomological catgeory of A, H(A), is given by

• Ob(H(A)) ∼= Ob(A)

• H(A)(X0, X1) = H(homA(X0, X1), µ1
A)

• [a2] · [a1] = (−1)|a1|[µ2
A(a2, a1)]

H(A) then becomes a graded non-unital k-category21. 21 In a way similar to the Homotopy

Transfer Theorem from the last

talk, we could endow H(A) with the
structure of an A∞ category once

again, with possibly non-trivial higher

compositions. For our purposes here,
however, it is enough to think of as a

regular category.

There are several notions of unitality attached to A∞-categories of

which we will make use.

Definition. An A∞ category A is strictly unital if, for all X ∈ Ob(A),

there exists eX ∈ hom0
A(X,X) such that

i. µ1
A(eX) = 0

ii. For every A ∈ homA(X0, X1),

(−1)|a|µ2
A(eX , a) = a = µ2

A(a, eX)

iii. For every d > 2, and for all 0 ≤ n < d

µdA(ad−1, ldots, an+1, eXn
, an, . . . , a1) = 0

Remark. Fukaya categories are, in general, not strictly unital.

They do, however satisfy the next notion of unitality, which is rather

weaker.

Definition. An A∞ category A is called cohomologically unital (or

c-unital) if H(A) is a unital graded k-category.
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Recall. A non-unital A∞-functor between 2 non-unital A∞-categories

A and B is a map

F : Ob(A)→ Ob(B)

and multilinear maps of degree 1− d for every d ≥ 1

Fd : homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1)→ homB(FX0,FXd)

such that∑
r≥1

∑
s1+···+sr=d

µrB(Fsr (ad, . . . , ad−sr+1, · · · ,Fs1(as1 , . . . , a1))

=
∑
m,n

(−1)�nFd−m+1 (ad, . . . , an+m+1, µ
m
A (an+m, . . . , an+1), an, . . . , a0)

Definition. For A and B strictly unital A∞ categories, a functor

F : A → B is called strictly unital if

• For every X ∈ A F1(eX) = eF(X)

• For any d ≥ 2

Fd(ad−1, . . . , an+1, eXn , an, . . . , a1) = 0

Definition. For A and B c-unital A∞ categories, a functor F : A → B
is c-unital if the induced functor H(F) is unital22. 22 Notice that for both categories and

functors, it is immediate from the

definitions that being strictly unital
implies being c-unital.

Definition. Let F : A → B be a functor of A∞ categories:

i. F is cohomologically full and faithful if H(F) is full and faithful.

ii. F is a quasi-isomorphism if H(F) is an isomorphism.

iii. F is a quasi-equivalence if H(F) is an equivalence of categories.

Proposition. The following statements hold

i. If A and B are strictly unital, the category nu-fun(A,B) is strictly

unital.

ii. If A and B are c-unital, the category nu-fun(A,B) is c-unital.

Additionally, we can define:

Definition. There is a subcategory fun(A,B) ⊂ nu-fun(A,B), which

is the c-unital A∞ category of c-unital A∞ functors.

A∞ Modules

Our objective is to generalize the Yoneda embedding mention in the

first section of this talk.
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Recall. Ch(k) is the dg category of cochain complexes of vector

spaces.

• Ob(Ch(k)) are cochain complexes

• For each i ∈ Z, Hom(X,Y )i is given by degree i morphisms X → Y .

• For each i ∈ Z the hom complex Hom(X,Y ) = (Hom(X,Y )•, d) has

differential given by

Hom(X,Y )
d→ Hom(X,Y )i+1

f 7→ f i+1 ◦ dX + (−1)idY ◦ f i

Remark. Ch(k) can be viewed as a strictly unital A∞-category.

Definition. For A a c-unital A∞ category, we define two categories of

A-modules:

nu-modA nu-fun(Aopp,Ch(k))

modA fun(Aopp,Ch(k))

⊂

We then have the Yoneda Embedding

A Yoneda
↪→ modA

X 7→ homA(−, X)

Remark. The Yoneda embedding is c-unital, and cohomologically full

and faithful.

Triangulated A∞ Categories

Let A be a c-unital A∞ category.

Definition. Let µ ∈ modA. A quasi-representative of µ is a pair

(Y, [t]), where Y ∈ A and

[t] : homA(−, Y )
∼→ µ

in H0(modA)

Definition. For X ∈ Ob(A), a shift of X is a quasi-representative

(X[1], [t]) of the Ainfty module homA(−, X)[1], ie

[t] : homA(−, X[1])
∼→ homA(−, X)[1]

To motivate the A∞ version of the cone construction:

Recall. If c : X → Y is a morphism of complexes, we have
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X X−1 X0 X1 · · ·

Y Y −1 Y 0 Y 1 · · ·

cone(c) X0 ⊕ Y −1 X1 ⊕ Y 0 X2 ⊕ Y 1 · · ·

X[1] X0 X1 X2 · · ·

c c

(
0

1

)

(
1 0

)

c

(
0

1

)

(
1 0

)

c

(
0

1

)

(
1 0

)

We define cone(c) to be the chain complex C = X[1]⊕ Y with differen-

tial

dC =

(
dX[1] 0

c[1] dY

)
And this sequence gives the completion of c to an exact triangle.

Definition. Let c ∈ hom0
A(Y0, Y1) such that µ1

A(c) = 023. The abstract 23 That is, such that c defines a

morphism in H(A).mapping cone of c is the A∞ module C = Cone(c) given by

C(X) = homA(X,Y1)[1]⊕ homA(X,Y0)

Where

µdC ((b0, b1), ad−1 . . . , a1) =(
µdA(b0, ad−1 . . . , a1), µdA(b1, ad−1, . . . , a1) + µd+1

A (c, b0, ad−1, . . . , a1)
)

gives the required structure on the image24. 24 Notice that in the lowest degree

case, we retrieve almost the classical
cone construction.

µ1C((b0, b1) =
(
µ1A(b0), µ1A(b1) + µ2A(c, b0)

)
Indeed, taking A to be a dg category,
for fixed X we get complexes C =

homA(X,Y1) and D = homA(X,Y0),
and c gives a morphism between these
complexes, in this case, µ1C can be

viewed as a differential on the cone
C[1]⊕D, and is precisely equal to

µ1C(b0, b1) = (dC(b0), dD(b1) + c(b0))

In H(modA), we then get

homA(−, Y0) homA(−, Y1)

(∗)

Cone(c)

Yoneda

iπ

where

i ∈ hom0
modA(homA(−, Y1), C)

π ∈ hom1
modA(C,homA(−, Y0)
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and

i1(b1) = (0, (−1)|b1|b1

πa(b0, b1) = (−1)|b0|b0

Definition. An exact triangle in A is a diagram in H(A)

Y0
[c1]

// Y1

~~

Y2

``

which becomes isomorphic to a diagram (∗) under the Yoneda embed-

ding.

Definition. A is triangulated if

• Ob(A) 6= ∅

• Every [c] ∈ H0(A) can be completed to an exact triangle25. 25 If all cones exist, can notice that

Cone(Y
eY→ Y )

is a zero object in H0(A), and that,
then,

Cone(Y → Cone(Y
eY→ Y ))

is a shift of Y

• For every Y ∈ Ob(A) there exists a Ỹ ∈ Ob(A) such that Ỹ [1] ∼= Y

in H0(A).

Theorem. If A is a triangulated A∞ category, then H0(A) is a trian-

gulated k-category.

Example. • Ch(k) is a triangulated A∞ category.

• modA is a triangulated A∞ category.

• more generally, fun(A,B) where B is a triangulated A∞ category is

itself a triangulated A∞ category.

Definition. Let B be a triangulated A∞ category, and A be a full

A∞ subcategory. We denote by 〈A〉B the smallest strictly full trian-

gulated subcategory of B containing A, and we call it the triangulated

subcategory of B generated by A.

Definition. A 6= ∅. A triangulated envelope of A is a cohomologically

fully faithful functor F : A → B with B a triangulated A∞ category

such that 〈F(A)〉B = B26. 26 Triangulated envelopes exist. We

can take the Yoneda embedding

Y : A ↪→ modA

and then take a triangulated envelope

of A to be 〈Y (A)〉modA.
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Introduction to Symplectic Manifolds
Max Körfer

The primary goal of this talk will be to introduce basic notions related

to symplectic manifolds, and to provide motivation (from Kähler Ge-

ometry and from Physics) as to why symplectic geometry is a natural

topic of study.

Symplectic Manifolds

Definition. A symplectic manifold (M,ω) is a smooth manifold M

with a closed, non-degenerate27 2-form ω ∈ Ω2(M) called the symplec- 27 By non-degenerate, we mean that

the map of bundles

ω̃ : TM → T ∗M

induced by ω is an isomorphism.

Alternately, we could say that the

bilinear form induce by ω on TxM is
non-degenerate for all x.

tic form of M .

Example (Cotangent Bundles). Let Q be a manifold, and let p :

T ∗Q → Q be the projection. We can define28 the canonical 1-form

28 There are several equivalent condi-

tions that define the canonical 1-form.

All three conditions listed here are
sufficient for that purpose.

α ∈ Ω1(T ∗Q) by the condition that, for a point (x, θ) ∈ T ∗Q and for

X ∈ TxQ, we have

α(X) = 〈θ, p∗X〉

Pictorially:

Q

TQX

θ α(X)

We could equivalently define α by the property that, for any θ ∈
Ω1(Q), viewed as a map θ : Q→ T ∗Q, we have θ∗α = θ.

We take ω = dα. In local coordinates (q1, . . . , qn, p1, . . . , pn) we

have that

α =
∑
i

pidqi ω =
∑
i

dpi ∧ dqi

So we can immediately verify that (T ∗Q,ω) is a symplectic manifold.
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As it turns out, the symplectic manifold T ∗Q from the example is,

in some sense, the prototypical example of a symplectic manifold:

Theorem (Darboux). Let (M,ω) be a symplectic manifold. Then lo-

cally, around any point x ∈M , there are local coordinates (q1, . . . , qn, p1, . . . , pn)

such that

ω =
∑
i

dpi ∧ dqi

Proposition (Basic Observations). For (M,ω) a symplectic manifold:

1. dim(ω) = 2n

2. 1
n!ω

n is an oriented volume form

3. [ωk] ∈ H2k(M) are non-trivial

Proof. (1) and (2) follow from linear algebra and an application of the

determinant, respectively29. For (3), we note that 29 Since have stated Darboux’s the-

orem already, one might be tempted
to say that (1) follows from the the-

orem. However, (1) is a far more

elementary/primary observation than
Darboux’s theorem.

[ωn] ∩ [M ] =

∫
M

ωn 6= 0

so that [ω] 6= 0, and (3) follows.

Definition. Let (M,ω) be a symplectic manifold. An immersion

i : L ↪→M

is called Lagrangian (or a lagrangian submanifold) if, for any x ∈ L

i∗TxL = (i∗TxL)
⊥

with respect to the inner product induced by ω.

Remark. We can immediately see that dimL = dimM − dimL, so

that dimL = 1
2 dimM . To show that an immersion is Lagrangian, it

suffices to check that L is half-dimensional, and ω pulls back to 0 on

L.

Example. Let Q be a manifold, θ ∈ Ω1(Q), viewed as a map θ : Q →
T ∗Q. Let p : T ∗Q→ Q. Then we have the inclusion

i : Graph(θ) ↪→ T ∗Q

and can compute that

i∗ω = (θp)∗ω

= p∗θ∗ω

= p∗θ∗dα

= p∗dθ

So we can conclude Graph(θ) is lagrangian if and only if dθ = 0.
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Example. Let (M,ωM ) and (N,ωN ) be symplectic manifolds, and

f : M → N smooth. We then have the inclusion

i : Graph(f) ↪→M × (−N)

with the symplectic form on the target defined by

ωM×(−N) = p∗MωM − p∗NωN

We can then compute that

i∗ωM×(−N) = i∗(p∗MωM − p∗NωN )

= p∗MωM − p∗Nf∗ωN
= p∗M (ωM − f∗N )

We can then conclude that Graph(f) is lagrangian if and only if

dimM = dimN and f∗ωN = ωM .

Theorem (Weinstein, Local Neighborhood Theorem). Let (M,ω) be

a symplectic manifold. L ⊂ M lagrangian, L compact, and ∂L = ∅.
Then there exist neighborhoods U ⊂ M , V ⊂ T ∗L of L30 and a 30 For the definition of V , we mean

a neighborhood of the zero section

L ⊂ T ∗L
symplectomorphism31 φ : U → V making

31 We say that a morphism of sym-

plectic manifold f : M → N is a sym-

plectomorphism when f∗ωN = ωM .

U

L V

commute.

Definition. Let (M,ω) be a symplectic manifold.

1. For a hamiltonian function H : M → R define the hamiltonian

vector field XH ∈ X (M) by the condition that

ιXH
ω = −dH

2. For f, g ∈ C∞(M) define the poisson bracket

{f, g} = ω(Xf , Xg) = Xgf

Remark. We can compute the lie derivative of ω along a hamiltonian

vector field:

LXH
ω = dιXH

ω = −d2H = 0

Showing that ω is invariant under hamiltonian flows32 32 A hamiltonian flow for H is simply

a flow through the vector field XH .
More precisely, a hamiltonian flow is a

function

Φ : M × R→M

such that

d

dt
|t=0Φ(x, t) = (XH)x

Proposition. For (M,ω) a symplectic manifold,

1. C∞(M) is a poisson algebra with {−,−}
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2. C∞(M) → X (M) given by H 7→ XH is an anti-homomorphism of

Lie Algebras.

Example (Geodesic Flow). Let Q be a Riemannian Manifold with

metric g. We have an isomorphism induced by g

g̃ : TQ→ T ∗Q

so we can view TQ as symplectic with form g̃∗ω. If we take the hamil-

tonian function

H(X) =
1

2
g(X,X) =:

1

2
X2

The hamiltonian flow generated by H is the geodesic flow, so that the

flow line through (x,X) is given by (γt, γ
′
t) where γ is the geodesic

through x with initial velocity X.

Example. Let Q be a manifold,with a function S : Q → R. Then

we have a hamiltonian function p∗S : T ∗Q → R. We can write its

hamiltionan vector field XS in local coordinates as

−
∑
i

∂p∗S

∂qi
∂

∂pi

and have

dS =
∑
i

∂S

∂qi
dqi

Taking the Hamiltonian flow Φt through XS , we see that Φ1
33 sends 33 Note that this is a symplectomor-

phism, and thus sends lagrangian
submanifolds to lagrangian submani-

folds.

the zero section to dS. Pictorially:

Q

TQ

dS

Xp∗S

Symplectic Geometry and Kähler Geometry

Definition. A Kähler manifold (M,h) is a complex manifold M

equipped with a hermitian metric34 h such that dω = 0 for ω = I(h). 34 That is, a form h ∈ Γ(T ∗X ⊗ T ∗M)
such that h(a, a) ≥ 0 and h(a, b) =
h(b, a) for all a, b ∈ T ∗M .Remark. We have that

ω(X,Y ) = I(h(X,Y )) = I(h(Y,X) = −I(h(Y,X)) = −ω(Y,X)
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And, letting J be the almost complex structure given by multiplica-

tion by i, we have

ω(JX,X) = I(h(JX,X)) = I(ih(X,X)) = R(h(X,X)) > 0

For X 6= 0.

Proposition (Characterizations of Kähler Manifolds). The following

are equivalent:

1. (M,h) is Kähler

2. dω = 0

3. ∇LCJ = 0 where ∇LC is the Levi-Civita Connection.

4. ∇CH = ∇LC where ∇CH is the Chern connection.

Example (Smooth Complex Projective Varieties). Take S2n+1 ⊂
Cn+1 with the standard metric. The unitary group U(1) acts on S2n+1

isometrically, so we can form the quotient CPn = §2n+1/U(1), and it

inherits a metric called the Fubini-Study metric. It can be show that

CPn equipped with this metric is a Kähler Manifold.

Moreover, suppose (M,h) is a Kähler manifold, and i : N ↪→ M is

a submanifold. Then i∗ωM = ωN , so that dωN = 0, making N into a

Kähler Manifold.

Remark. We can define a Riemannian metric on any Kähler Manifold

by

g(X,Y ) = R(h(X,Y ))

We also see that

g(JX,Y ) = R(h(JX,Y ) = R(ih(X,Y )− h(X,Y ))

So that we can retrieve the imaginary part of h from g and J , and

thus, we can retrieve h from g and J .

Definition. Let M be a manifold

1. An almost complex structure on M is a complex structure on TM .

That is, J : TM → TM such that J 2 = −id.

2. J is called integrable if (M,J ) is locally isomorphic to Cn.

3. An almost complex structure is called compatible if

ω(X,Y ) = g(X,J Y )

for any X,Y ∈ TM .
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Proposition. Let (M,ω) be a symplectic manifold. The space of

almost complex structures compatible with ω is non-empty and con-

tractible.

Sketch of proof. Equipping M with a metric g̃ allows us to define

an automorphism J̃ by ω(X,Y ) = g̃(X, J̃ Y ). As a result, we have

immediately that J ∗ = −J .

If we consider J̃ = AJ where A∗ = A and J is orthogonal (WRT

g̃), we can show that J 2 = −1. If we set g = g̃(−, A−) we see that

(ω, g,J ) are compatible.

Theorem (Newlander-Nirenber). Let M be a manifold, and J an

almost complex structure. Then J is integrable if and only if35 35 Equivalently, we could say that the

Lie bracket preserves the splitting
T = T (1,0) ⊕ T (0,1) or that[

Γ(T (0,1)),Γ(T (0,1))
]
⊂ T (0,1)

[
Γ(T (1,0)),Γ(T (1,0))

]
⊂ T (1,0)

Example (Oriented Surface). Let M be an oriented surface, and

g be any Riemannian metric. Set ω =
√

det(g)dxdy, and let J be

the almost complex structure that comes from rotating the tangent

space 90 degrees36 We find that (g, ω,J ) are compatible. Notice that, 36 Pictorially:

J

∂x

∂y
almost definitionally, any two conformally equivalent metrics give the

same J .

Symplectic Geometry and Physics

Example (Classical Mechanics). Let Q be a configuration space37

37 That is, a manifold that, in some
sense, parameterizes all the possible

configurations of a physical system.

There is a function, called the Lagrangian

L : TQ→ R

which characterizes the time evolution of the system, under the rule

that q : R→ Q is a physical path if and only if∫
R

d

ds
|s=0L(qs, q̇s)dt = 0

for any smooth family of paths qs equal to q at s = 0.

This condition is equivalent to q being a solution of the Euler-

Lagrange equations:

d

dt

∂L

∂q̇i
=
∂L

∂qi

We then take the Legendre Transform

TQ → T ∗Q

(q, q̇) 7→
(
q,
∂L

∂q̇
=: p

)
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We will assume that this is an isomorphism. Applying the Legendre

transform to L we get a function H such that

H(q, p) = q̇p− L(q, q̇)

L(q, q̇) = qp−H(q, p)

In terms of H, the Euler-Lagrange equations become

ṗ = −∂H
∂q

q̇ =
∂H

∂p

which are known as the Hamilton-Jacobi equations.

Using the usual symplectic structure on T ∗Q, we can compute the

hamiltonian vector field associated to H

XH = −∂H
∂q

∂

∂p
− ∂H

∂p

∂

∂q

so that

ιXH
dp ∧ dq =

∂H

∂q
dq − ∂H

∂p
dp = −dH

So that the condition that q : R → Q be a flow line of a Hamiltonian

flow for H is equivalent to the condition that f satisfy the Hamilton-

Jacobi Equations38 38 One of the best known basic ex-

amples in physics is the Harmonic
oscillator, ie, the example of a mass

m attached to a spring with spring

constant k. The Lagrangian for this
problem is given by

L =
1

2
mq̇ −

1

2
kq2

and the Hamiltonian is

H(q, p) =
p2

2m
+

1

2
kq2

Example (Lagrangian Field Theories). We again begin with a man-

ifold M , this time representing spacetime, and we assume it comes

equipped with a fiber bundle F → M . We define F = Γ(F ) to be the

space of fields.

The dynamics (time evolution) are now given by a Lagrangian

density

L : F → Ω|top|(M)

in the sense that a field φ ∈ F is physical if and only if∫
M

d

ds
|s=0 (L(φs)) = 0

for a smooth family of fields φs with φ0 = φ.39 39 An example might be, given the
trivial bundle F = R×M →M ,

L(φ) =
1

2
m|dφ|2 + λφ2d(vol)

where vol is the volume form.

We then define the space

Ω
k,|`|
loc = lim

→
m

Ωk+1
vert (JmF )⊗C∞ Ω|`|(M)

Where JkF is the kth jet bundle of F 40. 40 For a fiber bundle π : F → M , the

kth jet bundle is a new fiber bundle
whose fibers can be thought of as

germs of sections of F , quotiented

by a certain equivalence relation.
We consider two germs of sections

equivalent in the kth jet bundle

JkF if they have the same partial
derivatives up to order k.

We have differentials

δ : Ωkvert(J
mF )→ Ωk+1

vert (JmF )
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and

d : Ωnvert(J
mF )⊗C∞ Ω|`|(M)→ Ωkvert(J

m+1F )⊗C∞ Ω|`|(M)

We can consider L ∈ Ω
0,|top|
loc (F × M), So that, under the induced

differential, we have DL ∈ Ω
1,|top|
loc (F ×M). In this setup, the analogue

of the Euler-Lagrange equations is that φ represents a physical field if

and only if DL = 0.

We can write

DL = δL+ dγ

calling γ ∈ Ω1,|top|−1 the variational 1-form. We can then define

δγ =: ω ∈ Ω2,|top|−1(M)

so that ω = D(L+ γ) on M ×M .

In general, this is not a symplectic form (non-degeneracy fails

whenever there are symmetries of the system). However, in some cases

(eg, modding out by gauge symmetries), ω can give a symplectic form

on a quotient of M ×M .

Example (Semiclassical Stationary States). For a non-relativistic

quantum particle, with position/velocity q : R3 → R and v : R3 → R,

we can define the state space for the system to be the hilbert space

H = L2(R3). The Hamiltonian operator dictating the dynamics of the

system is given by

Ĥ = − ~2

2m
∆ + V

For some potential V . This corresponds to a hamiltonian function on

T ∗R3

H(p, q) =
p2

2m
+ V

The time evolution is governed by the Schrödinger Equation

i~
∂

∂t
ψ = Ĥψ

By considering separable solutions of the form

ψ(t) = exp(
itĤ

~
)ψ0

we can consider the stationary equation

Ĥψ = Eψ

for E ∈ R
If V = 0, the solutions to the stationary equation are waves of

the form eixξ. As an approximation to solutions in the presence of a

potential, we can make the WKB ansatz, namely that

ψ = a(x) exp(
iS(x)

~
)
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Plugging this in yields the equation:

(Ĥ − E)ψ =
[
− ~2

2m
∆aψ − i ~

2m
∇a∇S − i ~

2m
a∆S

+
1

2m
a(∇S2) exp(

iS(x)

~
) + aV )

]
In a first-order approximation, we get

I) ∇a∇S + 1
2a∆S = 0

I) 1
2m (∇S)2 + V = E

(II) is equivalent to H(q,∇S) = E, which are the Hamilton equations

on the lagrangian submanifold L = Graph(dS).



Floer Homology I
Tobias Dyckerhoff

Symplectic Geometry as Lagrange did it

The following example is taken from the paper Memoire sur la theori

des Varione des éléments de planéts et la particulier des variatins des

grends axes de leur orbites, published in 1808 by Lagrange.

We can write down the equation of motion for a planet with mass

m revolving around the sun41. 41 For simplicity, we normalize such

that the sun is presumed to have mass

1.d2~r

dt2
+

1 +m

|~r|3
~r = 0 (*)

where ~r = (x(t), y(t), z(t)) ∈ R3. Supposing we have a solution ~r(t),

the angular momentum

~L = ~r × (~̇rm)

is conserved.42 42 This can be seen by taking

d~L

dt
= ~̇r × ~̇rm+ ~r × ~̈rm

= ~r ×
d2~r

dt2
m

And noticing that, taking the cross
product of ~r with equation (*), we get

~r ×
d2~r

dt2
= 0

Pictorially, our trajectories will therefore be confined to the plane

perpendicular to ~L.

~E

~L

~r(t)

The vector ~E in the diagram, which runs along the positive semi-

major axis, is known as the Laplace vector.
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We can, therefore, describe any solution by specifying a point in{
(~L, ~E) ∈ R3 × R3

∣∣ ~L 6= 0, | ~E| < const, 〈~L, ~E〉 = 0
}

angle θ of ~r(t) at time 0

 E
We see that E is a 6-dimensional manifold, and, following Lagrange,

we coordinatize it by

• a –semi-major axis

• b – eccentricity

• c – epoch

• f, g, h–position of the ellipse in 3-space

This setup assumes that there is no effect from other planets on the

orbit43. If we want to study the effect of other planets, we nned to 43 It also neglects the influence of the

orbiting planet on the sun.study a perturbation of equation (*), whcih leads to a ‘drift motion’

of points in E . Lagrange analyzed this problem, and arrived at the

following solution.

There exists a symplectic form on E44 given in coordinates by 44 This is, in some sense, the first
symplectic form ever written down.

ω = −na
2
da ∧ dc− na

√
1− b2
2

da ∧ df − na
√

1− b2
2

cos(h)da ∧ dg

+
na2b√
1− b2

db ∧ df +
na2b√
1 + b2

cos(h)db ∧ dg − na2
√

1− b2 sin(h)dg ∧ dh

where we have introduced n :=
√

1+m
a3 to ease notation.

Further, Lagrange observed that there exists a function H ∈
C∞(E ,R) such that the drift motion due to the gravitational effect

of other planets is given by the hamiltonian flow of the vector field XH

defined with respect to the form ω.

Floer Theory

We begin with Floer Theory. Let

• (M,ω) be a symplectic manifold45 45 Subject to some assumptions
related to compactness/bounded

geometry.• Ht ∈ C∞(M × [0, 1],R) be a hamiltonian function. We get the

associated hamiltonian vector field Xt and a hamiltonian diffeomor-

phism φ : X → X given by integrating Xt over t ∈ [0, 1].

• L compact Lagrangian submanifold.

Theorem (Floer). Assume that the symplectic area of any (immersed)

• 2-disk with boundary in L

• 2-sphere
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vanishes. Assume φ(L) and L intersect transversely. Then

#(φ(L) ∩ L) ≥
∑
k≥0

dimHk(L,F2)

Application (Arnold’s Conjecture). Let (N,ω) be a compact sym-

plectic manifold. ψ : N → N a Hamiltonian diffeomorphism. Assume

all fixed points of ψ are non-degenerate, then

#{fixed points} ≥
∑
k≥0

dimHk(N,F2)

Theorem ⇒ Application. (We assume all spheres in M have trivial

volume.) We can construct a new symplectic manifold

M = (N ×N, π∗1ω − π∗2ω)

And find lagrangian submanifolds46 46 There exists a hamiltonian diffeo-
morphism ψ̃ : M → M such that
ψ̃(L) = graph(ψ).

L := N
∆
⊂ (N ×N,ω)

ψ̃(L) = graph(ψ)


And so

#{fixed points} = #{ψ̃(L) ∩ L} ≥
∑
k≥0

dimHk(L,F2)

Example. in Floer’s context, let M = R × S1 = {(x, θ)}, with the

symplectic form ω = dx ∧ dθ.

L
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Then we have a Lagrangian submanifold L = {(0, θ)}. If we choose

the Hamiltonian function H = sin θ then we have dH = cos θdθ, and

XH = cos θ ∂∂θ as in the image.

0

π

2π

XH

We also then have the symplectomorphism φ, with, in particular,

φ(L) = {(cos θ, θ)}.

L

φ(L)

So that we see

#(φ(L) ∩ L) = 2 ≥ dimH∗(S1,Z/2Z)
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Floer’s Approach: Associate to (L, φ(L)) a cochain complex

CF (L, φ(L)) freely generated over Λ by L ∩ φ(L) such that

H∗(CF (L, φ(L))) = H∗(L,Λ)

Floer’s Complex

In what follows, let L0 and L1 be compact Lagrangians in a symplec-

tic manifold (M,ω) such that L0, L1 intersect transversely.

Definition. The Novikov Field Λk with base field k is

Λk =

{ ∞∑
i=0

aiT
λi
∣∣ ai ∈ k, λi ∈ R, lim

i→∞
λi =∞

}

We can then define the Floer complex as a Λk-vecotr space:

CF (L0, L1) =
⊕

p∈L0∩L1

Λk · p

To define the differential ∂ we equip M with an ω-compatible almost-

complex structure J47. The coefficient of q in ∂(p) is given by count- 47 Recall from the last talk that this is
a contractible choice.ing certain pseudo-holomorphic strips with boundary in L0 ∪ L1.

R× [0, 1]
t
s

L0

L1

pq

u

That is, maps u : R× [0, 1]→M such that
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1. (Cauchy-Riemann)
∂u

∂s
+ J(u)

∂u

∂t
= 0

2. (Lagrange Boundary Conditions) u(s, 0) ∈ L0, u(s, 1) ∈ L1 and

lim
s→∞

u(s, t) = p, lim
s→−∞

u(s, t) = −q

3. (Energy Bound)

E(u) =

∫
u∗ω =

∫ ∫
|∂u
∂s
|2 ds dt <∞

The definition of the differential depends on

Fundamental result (gromov): The space of solutions of

(1) (2), and (3)48 corresponding to a fixed class [u] ∈ π2(M,L1 ∪ 48 Technically, a perturbed version of
these three equations.L2), which we will denote by M̂(p, q, [u], J), is a smooth manifold

whose dimension is given by the maslov index ind([u]). The quotient

M(p, q, [u], J) of M̂ under the R action given by u(s, t) 7→ u(s− a, t) is

a smooth manifold of dimension ind([u])− 1.

Definition. The Floer Differential

∂ : CF (L0, L1)→ CF (L0, L1)

is the Λk-linear extension of

∂(p) =
∑

q∈L0∩L1

#M(p, q, [u], J)Tω([u])q

where we abuse notation by letting [u] = ind([u])− 149. 49 A note on the notation #M: In
general we use k = F2 and simply

take #M = parity of sum of points.

If L0, L1 are oriented and spin, then
M has a natural orientation and #M
denotes the signed sum of points over

any field k.
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Last time we defined the Floer complex:

• L0 and L1 compact lagrangians in (M,ω) a symplectic manifold.

• L0 and L1 intersect transversely.

• We have the Novikov field

Λk =

{ ∞∑
i=0

aiT
λi
∣∣ ai ∈ k, λi ∈ R, lim

i→∞
λi =∞

}

• The FLoer Complex is CF (L0, L1) =
⊕

p∈L0∩L1
Λ · p with differen-

tial

∂(p) =
∑

q∈L0∩L1
[u]∈π2(M,L0∩L1)

ind([u])=1

#M(p, q; [u], J)Tω([u]) · q

Where

• J is an ω-compatible almost complex structure.

• M(p, q; [u], J) is the moduli space of pseudo holomorphic50 strips 50 In the sense that ∂Ju = 0.

of finite energy ω([u]) − [u].ω and fixed topological type [u] modulo

reparametrization s 7→ s− a.

• ω([u]) is the energy/symplectic area

• ind([u]) is the Maslov index.

We then have that for all solutions u ∈ M(p, q; [u], J) that are

regular, then51 51 This follows from a Riemann-Roch

type theorem for Riemann surfaces
with boundary (in our case, the strip

R × [0, 1]) and Lagrangian boundary

conditions. This yields:

ind(D∂,u) = dim ker(D∂,u)− dim coker(D∂,u)

= ind([u])− 1

The condition that u be regular

means that dim coker(D∂,u) = 0,

yielding the conclusion in the text.

dimM(p, q; [u], J) = ind([u])− 1

Maslov Index

Step 1: Consider the Grassmanian of Lagrangian subspaces LGr(2n)

inside the symplectic vector space

(Cn, dx1 ∧ dy1 + · · ·+ dxn ∧ dyn)



44

where zj = xj + iyj . We have that52 52 This follows from the fact that
there is a transitive action of U(n)

on LGr(2n), along with an explicit

computation of the kernel.LGr(2n) ∼= U(n)/O(n)

and therefore we have a map

det2 : U(n)/O(n)→ S1

inducing an isomorphism on fundamental groups. Given a loop ` in

LGr(2n), we define its maslov index to be the winding number under

the map det2.

Step 2: Given λ0, λ1 ∈ LGr(2n) transverse, then there exists

A ∈ Sp(2n,R) such that A(λ0) = Rn and A(λ1) = iRn. Therefore, we

obtain a path in LG(2n) from λ0 to λ1 given by53 53 One can check that the homotopy
class of this path is independant of A

A−1

(
exp

(
−iπt

2

)
R
)

t ∈ [0, 1]

call this the canonical short path from λ0 to λ1.

Given

u : M

L0

L1

pq

we trivialize u∗TM as a symplectic bundle so that we have an isomor-

phism to D × (Cn, ω). We then get a loop in LGr(2n)54: 54 Where we denote the canonical

short path by CSP .

TqL1 TpL1

TqL0 TpL0

CSP (CSP )−1`

We can then define ind([u]) to be the Maslov index of the loop L.

Example. As in the previous talk, let M = R × S1 and ω =

dx ∧ dθ with the Hamiltonian function H = sin θ. Then ψH(L0) =

graph(cos θ) =: L1. We then have two possible pseudo holomorphic

strips55: 55 We can heuristically explain why
there is only one possible disk in each

gap since PSL(2,R) is dimension 3.
Fixing the two points removes two
degrees of freedom, and modding out

by s 7→ s− a removes another.
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L0

L1

q p q

u

v

We then have precisely two paths p to q56 and so we can compute the 56 The requirements that both strips

be oriented and go from L0 to L1

means that both paths must go from
p to q.

differential on

CF (L0, L1) = Λ · p⊕ Λ · q

To do so, however, we mus first compute the maslov index of [u]. We

have that

LGr(2) = U(1)/O(1) = S1/±1 = RP 1

and a quick computation shows us

TqL1 TpL1

TqL0 TpL0

CSP (CSP )−1`

that is, the loop ` gives a half-twist. We then have that the winding

number of det2(`) is 1 = ind([u]). The differential then becomes:

∂(p) = Tω([u]) · q + Tω([v]) · q

However, in ΛF2
, the term Tω([u]) + Tω([v]) is precisely zero, and,

since we have no strips q to p, we also have ∂(q) = 0. S our complex

becomes57:

57 It is worth noting, that since we

have not yet defined a grading on
CF (L0, L1), we can really only state

this for ungraded complexes.

Λ · p 0→ Λ · q ∼= H∗(L0,Λ)

as expected58.

58 Moreover, we can see that, in this
case, we can associate our picture:

L0

L1

q p q

To the picture

p

q

So that we can see, at least heuristi-
cally, that CF (L0, L1) is the Morse

complex of L0.

Example (Non-example). We again take our symplectic manifold to

be M = R × S1, with form ω = dx ∧ dθ. However, we now consider

a completely different Lagrangian L1, of the form of a homotopically

trivial circle embedded in the side of the cylinder as in the picture
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L0

L1

u

v

q p

We again have

CF (L0, L1) = Λ · p⊕ Λ · q

but now

∂(p) = T 2q

∂(q) = T 2p

so that the differential squares to ∂2(−) = T 4 · (−) rather than zero59. 59 This is why we impose the condi-
tion that all disks with boundary in

L1 ∪ L0 have trivial symplectic area.

Alternately, we could accept ∂2 6= 0,
and get an object called a twisted A∞
category.

When/Why ∂2 = 0

We let [u] be a strip with ind([u]) = 2 and study M(q, p; [u], J), which

turns out to be non-compact of dimension 1.

Gromov: M(q, p; [u], J) can be compactified by adding boundary

points corresponding to 3 types of ‘degenerate’ pseudo-holomorphic

strips:

I) Broken Strips:

q p

L1

L0

q p

L1

L0

L1

L0

II) Disk Bubbles60: 60 One can find explicitly a sequence
of strips with energy becoming in-

creasingly concentrated on the bound-
ary to yield such bubbles. See, eg:
Auroux,A Beginners Introduction to
Fukaya Categories.
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q p

L1

L0

q p

III) Sphere Bubbles:

q p

L1

L0

q p

If II) and III) can be excluded61, then we have: 61 For example, assume π2(M,Li)·ω =
0 and π2(M) · ω = 0.

∂M(q, p; [u], J) =
⊔

r∈L0∩L1
[u′]+[u′′]=[u]
ind[u′]=ind[u′′]

M(q, r; [u′], J)×M(r, p; [u′′], J)

And we have Gromov’s compactness theorem:∑
[# (M(q, r; [u′], J)) # (M(r, p; [u′′], J))] · Tω([u′])+ω([u′′]) = 0

The right hand term is precisely the Tω([u]) coefficient of q in ∂2(p).

So we see that, under the assumption that II) and III) are excluded,

∂2 = 0
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Continuing from last time, we are interested in the question: Are there

any broken strips that appear in surfaces?

Example. Let M = C with symplectic form ω = dx ∧ dy, and

lagrangians as pictured below:

L0 = R

L1 = exp(iR)

q p

We will explicitly produce a family of pseudo-holomorphic strips in

M(p, p; [u], J) which converge to a broken strip.

∼=
C

uα

Where the first map is biholomrphic by the Riemann mapping the-

orem, and the maps uα depending on a real parameter α are given

by:

uα(z) =
z2 + α

1 + αz2

which looks like62 62 Note that the topological type
of uα is that of the disk, so that

ind([uα]) = 2
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L0 = R

L1 = exp(iR)

q pα

Where, in our diagram of the pseudo-holomorphic strip, we have:

q p

L1

L0

α

After factoring out reparameterizations, we have

M(p, p; [u], J) ∼= (−1, 1) = {α}

We then have the following degenerations: as α→ −1,

p pq

L1

L0

L1

L0

And, as α → 1, we get a disk bubble (type II from the previous talk),

in which the bottom strip collapses to the point p, leaving:

p
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Product Structures

We now move on to trying to define the A∞-structure on the fukaya

category. Let L0, L1, L2 be Lagrangian submanifolds63 of (M,ω) a 63 We require that these intersect

transversely, though we permit 3-fold

intersections. In general, we can per-
turb the Cauchy-Riemann equations

defining pseudo-holomorphicity to get
transversality.

symplectic manifold. Then there is a composition

CF (L1, L2)⊗ CF (L0, L1)→ CF (L0, L2)

given by counting pseudo-holomorphic disks with 3 omitted boundary

points64: 64 It does not matter where the points

are embedded, since the automor-
phism group PSL(2,R) acts 3-fold

transitively on the upper half-place.

z2

z0
z1

(∗)

L0

L2 L1

q p1

p2

That is, by counting pseudo-holomorphic maps of D, where D is a

disk with labeled points z0, z1, z2 along with a choice of conformal

structure up to biholomorphic isomorphism. More precisely,

p2 · p1 =
∑

q∈L0∩L2
ind([u])

#M(p1, p2, q; [u], J)Tω([u]) · q

where M(p1, p2, q; [u], J) is the moduli space of disks like (∗).

Claim. If [ω] · π2(M ;L) = 0 and [ω] · π2(M) then we have

∂(p2 · p1) = ∂(p2) · p1 + p2 · ∂(p1)

The proof follows the same basic idea as the proof that ∂2 = 0. We

consider the moduli space M(p1, p2, q; [u], J) with ind([u]) = 1 which

is a non compact 1 dimensional manifold. By Gromov, this can be

compactified using as boundary points:

I) points corresponding to

L0

L2

L1

r

p1

p2

q

L2

L0

II) Diagrams of the same sort, but at the vertex p2
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III) Diagrams of the same sort, but at the vertex p1

We then notice that counting the number of type I) gives us the

∂(p2 · p1), type II) gives use ∂(p2) · p1 and type III) gives use p2 · ∂(p1).

Since the boundary points come in pairs65 we get that the formula 65 A compact 1-manifold with bound-

ary is simply a union of intervals and
circles, so it has an even number of

boundary components. Gromov’s

compactness theorem states that there
is a bijection between all possible

degeneracies of types (I) (II) and

(III), and the boundary points of the
compactification of M(p1, p2, q; [u]J).

holds modulo 2.

Higher Operations

Given a set of transverse Lagrangians L0, . . . , Lk in (M,ω). we can

define

µk : CF (Lk−1, Lk)⊗ · · · ⊗ CF (L0, L1)→ CF (L0, Lk)

given by counting pseudo-holomorphic disks of the sort:

q

p1

p2 p3

Lk

L0

L1

L2

zk

z0

z1 · · ·

up to the action of

Aut(D) ∼= PSL(2,R)

or, more precisely:

µk(pk, . . . , p1) =
∑

#M(p1, . . . , pk, q; [u], J) · Tω([u])q

where the sum ranges over q ∈ L0 ∩ L1 and ind([u]) = 2− k66. 66 This value is chosen because,
assuming regularity, we have

dimM(p1, . . . , pk, q; [u], J) = (k+1)−3+ind([u])

The formulas relating the various operations µk come from con-

sidering compactifications of the moduli spaces listed above. The

boundary points in these compactifications correspond to

1. Strip breaking.

2. collisions among the label set {z0, z1, . . . , zk}.

As a warm up, consider M0,n+1, the moduli space of conformal

structures on the disk with n + 1 chosen boundary points,which is

equivalent to 
Labeled configurations

of points on

S1 the unit circle


/PSL(2,R)

For example, we have



52

M0,4 = z2

z3

z0

z1

Since PSL(2,R) can send three points to any other three points, we

can restrict oursives to considering the motion of z3, so that we get

an open interval. The compactification results in our consider what

happens when z3 collides with one of the other points. If z3 collides

with z0, we compactify by adding the moduli of

z1

z2 z3

z0

and, when z3 collides with z2, we use

z2

z3 z0

z1

In each case, this amounts to adding a point, so that we get the closed

interval.

Exercise. M0,5 = K4 the fourth stasheff polytope67. 67 More generally, it is true that

M0,n+1 = Kn.

The A∞ relation68 68 Where, as previously, m3 ◦ ∂ =

m3(∂×1×1)+m3(1×∂×1)+m3(1×
1× ∂).∂ ◦m3 +m3 ◦ ∂ = m2(m2 × 1) +m2(1×m2)

follows from counting the boundary of

M(p1, p2, p3, q; [u], J)

The left hand side of the relation corresponds to strip breaking,

whereas the right hand side corresponds to collisions.

Fact. With sufficient care, one can show that the A∞ relations

k∑
`=1

k−∑̀
j=0

µk+1−`(pk, . . . , pk+`+1, µ
`(pj+`, . . . , pj+1), pj , . . . , p1) = 0

hold.
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Example. Let M = R2/Z ⊕ Z and ω = λdx ∧ dy for λ ∈ R>0. And

consider Lagrangians given by

L0 = R · (1, 0) L1 = R · (1,−1) L2 = R · (1,−2)

as in the diagram

L0

L1

L2

We then have

CF (L0, L−1) = Λ · q CF (L1, L2) = Λ · q CF (L0, L2) = Λ · p⊕ Λ · q

And pair of langrangians diverge from each other, so we have no

pseudo-holomorphic strips, and thus ∂ = 0 everywhere.

We can then compute the map

CF (L1, L2)⊗ CF (L0, L1)→ CF (L1, L2)

We write m2(q, q) = A · p + B · q and compute A and B. To compute

A, we must count triangles of the shape

L0

L2 L1

p q

q

So we find (in the universal cover)
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L0

L1

L2

q p

q

So we must count69 triangles with vertices 69 It requires some additional justifi-

cation, omitted here, to see why we
simply count immersed triangles up to

reparametrization.

{
(0, 0), (0, n+

1

2
), (2n+ 1,−(2n+ 1))

}
which have area λ(n+ 1

2 )2. So that

A =
∑
n∈Z

Tλ(n+ 1
2 )2

We can also do the same for B:

L0

L2

L1

q

q

q

so that we conside triangles with vertices

{(0, 0), (n, 0), (2n,−2n)}
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yielding

B =
∑
n∈Z

Tλn
2

so that

m2(q, q) =
∑
n∈Z

Tλ(n+ 1
2 )2 · p+

∑
n∈Z

Tλn
2

· q

Example (Mirror Symmetry). From mirror symmetry we have

Fuk(R2/Z2, λdx ∧ dy) ∼= Db(Coh,C/Z⊕ iλ)

Where Fuk is the Fukaya category and Coh stands for coherent

sheaves. We then have correspondences

L0 ∼ O

L1 ∼
Line bundle of degree 1

Take O(P ) for P ∈ E
L2 ∼ O(2P )

We can then compute:

CF (L0, L1) = Hom(O,O(P )) dim = deg = 1

CF (L1, L2) = Hom(O(P ),O(2P )) dim = 1

CF (L0, L2) = Hom(O,O(2P )) dim = 2



Part III

Applications



Categorifying the Jones Polynomial
Walker Stern

Definition. A link L is an isotopy class of embeddings of circles

into R3. A plane projection D of a link L is a projection of L onto a

plane in R3 remembering over/under intersections. An isotopy class of

plane projections is called a plane diagram of L. A plane diagram D is

called generic if it has no triple intersections, cusps, or tangencies.

The conditions under which two plane diagrams represent the same

link are well-known. In particular, D1 and D2 represent the same link

if and only if they are related by the Reidemeister Moves:

I. Left twist

II. Right twist

III. Tangency

IV. Triple Point
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Example. Making use of the left twist we find that the diagrams

both represent the unknot.

To a plane diagram D it is possible to associate a polynomial

〈D〉 ∈ Z[q, q−1]

according to the rules

1. 〈#〉 = q + q−1, where # represents the unknot.

2. For links only differing inside the pictured area,〈 〉
=

〈 〉
− q

〈 〉

3. For two diagrams D1 and D2,

〈D1 tD2〉 = 〈D1〉 〈D2〉

It is important to note that 〈D〉 is not invariant under Reidemeis-

ter moves70. 70 The only move under which it is
invariant is the triple point move.

It is a quick calculation to see that

the right twist introduces a factor of
−q−2, the left twist a factor of q, and

the tangency move a factor of −q−1.

However, in the definition of this polynomial, we have neglected

the orientation of links. In a diagram of an oriented link, the crossings

represented above as

can instead be represented as either of

Given a diagram D, we will call the number of crossings of the first

kind y(D) and the number of crossings of the second kind x(D).
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Definition. The Scaled Kauffman Bracket71 is an invariant of a link 71 More conventional is the Kauffman
bracket, f [L], for which the polyno-

mial [D] ∈ Z[A,A−1] is given by the

rules

1. [#] = 1

2. For diagrams differing only inside
the pictured area:[ ]

= A

[ ]
−A−1

[ ]

3. [# tD] = (−A2 −A−2)[D]

Under this definition, we have

K(L)(q=−A2) = (−A2 −A−2)f [L]

L gievn by

K(L) = (−1)x(D)qy(D)−2x(D)〈D〉

for any diagram D of L.

There is another, closely related link invariant:

Definition. The Jones Polynomial V (L) of an oriented link is deter-

mined by two properties:

1. The Jones Polynomial of the unknot is 1

2. For L1, L2, L3 links differing only by

L1 L2 L3

we have

t( − 1)V (L1)− tV (L2) = (
√
t− 1√

t
)V (L3)

It is a well-known fact72 that 72 This is not difficult to show di-

rectly. We have that K of the unknot

is q + q−1, and one can explicitly
compute that for L1, L2, and L3, we

have the relation:

q−2K(L1)−q2K(L2) = (q−1−q)K(L3)

V (L)√t=−q =
K(L)

q + q−1

Algebraic Preparations

We will need some fixed algebraic objects for the rest of the talk.

• Let R = Z[c] be a Z-graded ring, with the grading given by

deg(1) = 0 deg(c) = 2

Let R − mod0 be the abelian category of graded R-modules, with

objects M =
⊕
Mi and morphisms graded maps of degree 0. For

n ∈ Z we have and automorphism of R − mod0, denoted {n}, and

given by

M{n}i = Mi+n

• Let A be the free rank 2 R-module spanned by 1 and X such that

deg(1) = 1 deg(X) = −1

The multiplication is given by 1X = X1 = 1 and X2 = 0. The unit

is the map i : R→ A given by 1 7→ 1

A also has a coalgebra structure, given by morphisms ∆ and ε

(comultiplication and counit)73 73 More explicitly,

ε : A → R

ε(1) = −c
ε(X) = 1

∆ : A → A⊗A
∆(1) = 1⊗X + X⊗ 1 + cX⊗X

∆(X) = X⊗X
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Definition. The graded euler characteristic of M ∈ R−mod0 is

χ̂(M) =
∑
j∈Z

dimQ(Mj ⊗Q)qj

We also notice that we have two automorphisms of the category of

cochain complexes Kom(R −mod0): [n] given by shifting the cochain

down, and {n} given by shifting the grading.

The final piece of algebraic formalism we will need is the notion of

I-cubes. Let I be a finite set, and B a category. let

r(I) = {(L, a)|L ⊂ I, a ∈ I \ L}

Definition. A commutative I-cube V over B consists of

• For each L ⊂ I an object V (L) ∈ B

• For each (L, a) ∈ r(I), a morphism in B:

ξVa (L) : V (L)→ V (La)

such that for any triple (L, a, b) with a 6= b and neither lying in L

ξVb (La) ◦ ξVa (L) = ξVa (Lb) ◦ ξVb (L)

Examples. • If I = ∅, V is simply a choice of object in B.

• If I = {a}, V is a choice of a morphism in B

• If I = {a, b}, then V is a commutative diagram:

V (b) // V (ab)

V (∅)

OO

// V (a)

OO

More generally, for |I| = n, the objects of V will correspond to the

vertices of the standard n-cube in euclidean space, and the morphisms

will correspond to the edges.

Definition. A morphism of commutative I-cubes V → W is a collec-

tion of morphisms in B

ψ(L) : V (L)→W (L)

such that, for all (L, a) ∈ r(I) TFDC

V (L)

��

ψ(L)
// W (L)

��

V (La) // ψ(La) W (Lb)
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Fact. If B is an abelian category, commutative I-cubes over B from

an abelian category.

Now suppose I is a finite set with I = Jt{a}. Given a commutative

I-cube V , there are 2 ways to extract a J-cube from it74 74 For example, let I = {a, b}, and V

the diagram

V (b) // V (ab)

V (∅)

OO

// V (a)

OO

Then Va(∗0) is the morphism

V (∅)→ V (b)

and Va(∗1) is the morphism

V (a)→ V (ab)

• Va(∗0)(L) = V (L)

• Va(∗1)(L) = V (La)

This establishes a 1-1 correspondence between I-cubes and mor-

phisms of J-cubes.

Definition. For I a finite set, B an additive category, a skew-commutative

I-cube (or skew I-cube) over B is an I cube, where, instead of require-

ing the faces to commute, we require:

ξVb (La) ◦ ξVa (L) + ξVa (Lb) ◦ ξVb (L) = 0

We can define tensor product and direct sum of I-cubes over R −
mod0 objectwise, and we find, in particular, that V ⊗W is

• A commutative I-cube if V and W are both skew or both commu-

tative

• A skew I-cube if V is skew and W is commutative, or vice versa.

This means that we can pass from commutative I-cubes to skew

I-cubes by tensoring with a skew I-cube. We now construct a special

skew I-cube, whose tensor product action on commutative I-cubes

is in some sense the same as inserting signs to make morphisms anti-

commute.

Given L a finite set, denote by o(L) the set of total orders of L. For

x, y ∈ o(L), let p(x, y) be the parity of the symmetric group element

sending x to y.

Let E(L) be the quotient of the free R-module on o(L) by the

relations

x = (−1)p(x,y)y

for every x, y ∈ o(L). It is immediate that E(L) is a rank 1 R-module.

We also get maps E(L)→ E(La) associated to the maps

o(L) → o(L)

x 7→ xa

We can show that these maps are such that

E(L) //

��

E(La)

��

E(Lb) // E(Lab)
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anticommutes. So, for any finite set I, we get a skew I-cube EI given

by

EI(L) = E(L)

Definition. Given V a skew I-cube over B an abelian category, we

can define the complex75 of V to be 75 For example, let I = {a, b}, then

C
•
(V ) =


V (∅) i = 0

V (a)⊕ V (b) i = 1

V (ab) i = 2

0 else

A quick computation of the differen-

tials gives us

d1◦d0 = ξVb (a)◦ξVa (∅)+ξVa (B)◦ξVb (∅) = 0

C
•
(V ) = (C

i
, di)i∈Z

with

C
i
(V ) =

⊕
L⊂I

|L|=i

V (L)

and, for x ∈ V (L) di(x) =
∑
a∈I\L ξ

V
a (L)x

From Links to Cubes

Now, we would like a mechanism whereby we can extract an I-cube of

some sort from a link. To do this, take a diagram D of L.

A double point of D can be resolved in two ways:

0-res 1-res

Definition. A resolution of a plane diagram D is a resolution of each

double point of D.

Let I be the set of double points of D. There is a bijection between

the set of resolutions of D and subsets of I given by

L 7→ resolution given by 1-res on L

Digression:TFT

Definition. A topological field theory (TFT) is a symmetric monoidal

functor from a bordism category to another symmetric monoidal cate-

gory.

There is a TFT

F : 2Cobcl → R−mod0

with F (S1) = A and (where the cobordisms are read from bottom to

top)
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7→ m : A×A→ A

7→ ∆ : A→ A×A

7→ i : R→ A

7→ ε : A→ R

7→ IdA

The Complex of a Link

A resolution of D gives a union of k circles, for example:

Now, given 2 resolutions of D differing at a single double point a,

D(L) and D(La), we can find a neighborhood U of a such that the

resolutions differ only inside U . We will use this neighborhood to

construct a canonical cobordism Sa(L) between D(L) and D(La).
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This construction boils down to the requirement that, outside U ,

the cobordism Sa(L) be the cylinder on D(L), and that inside U it be

given by76: 76 More technically, we require that S

be the surface embedded in R2 × [0, 1]
such that

1. ∂(S) = D(L) tD(La)

2. outside U × [0, 1],

S =
[
D(L) ∩

(
R2 \ U

)]
× [0, 1]

3. The connected component of S

that has non-trivial intersection

with U × [0, 1] is homeomorphic to
the pair of pants.

4. The projection S → [0, 1] has only

one critical point.

It is immediate to observe that compositions of these cobordisms

commute in the expected ways, so that we have a commutative I-cube

in 2Cobcl. We can then use the functor F to define a commutative

I-cube in R−mod0, by

• VD(L) := F (D(L)){−|L|}

• ξVa (L) := F (Sa(L))

An explicit computation shows

deg (F (Sa(L))) = −1

so that ξVa (L) preserves the shifted gradings.

Example. If we take the link diagram

we get the cube

A⊗2 m //

m

��

A

∆
��

A
∆ // A⊗2

Now that we have a cube associated to a diagram D, we can extract

a complex from it:

Definition. We define

C
•
(D) = C

•
(VD ⊗ EI)

and

C•(D) = C
•
(D)[x(D)]{2x(D)− y(D)}

And we can now state the main theorem of this talk:
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Theorem. For an oriented link L,

K(L) = (1− q2)
∑
i∈Z

(−1)iχ̂(Hi(D))

where Hi(D) := Hi(C•(D)).

Proof. For a complex M• in Kom(R−mod0), define

χ̂(M•) :=
∑
i∈Z

(−1)iχ̂(M i)

Then it is a simple fact form homological algebra that

χ̂(C•(D)) =
∑
i∈Z

(−1)iχ̂(Hi(D))

Additionally, we have that, for a graded R-module M ,

χ̂(M{n}) = q−nχ̂(M)

and for a complex M•

ˆchi(M•[n]) = (−1)nχ̂(M•)

Now, let D1, D2, D3 be plane diagrams differing by

D1 D2 D3

The cobordism described above yields a map of complexes

C
•
(D)

f→ C
•
(D3){−1}

such that C
•
(D1)[1] is isomorphic to cone(f). Hence

χ̂(C
•
(D1)) = ˆchi(C

•
(D2))− qχ̂(C

•
(D3))

and
ˆchi(C•(D)) = (−1)x(D)qy(D)−2x(D) ˆchi(C

•
(D))

and, on the unknot diagram #,

ˆchi(C
•
(#)) = ˆchi(A) = (q + q−1)

These conditions correspond precisely to

〈D1〉 = 〈D2〉 − q〈D3〉
〈#〉 = (q + q−1)

K(D) = (−1)x(D)qy(D)−2x(D)〈D〈

proving the proposition.
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Khovanov also proves another result, showing that, in some sense,

the invariants achieved with this technique are finer than the Jones

polynomial.

Theorem. If D is a plane diagram of an oriented link L, then for i ∈
Z, the isomorphism class of graded R-modules Hi(D) is an invariant

of L.

The theorem is proved by explicitly constructing a quasi-isomorphism

for each Reidemeister move, by means of a cobordism between link di-

agrams.



Knot Invariants
Catharina Stroppel

Khovanov Homology

Given a diagram D of a knot or link L, we can use Khovanov’s ma-

chinery to get a bigraded vector space⊕
i,j

Hi,j(D)

which is an invariant of L.

For a more general setup, we can cut a knot or link L into ‘braids’

as in the diagram.

we get from this the elementary pieces

Consider the Lie Algebra slk(C), which consists of traceless matri-

ces. We have an inclusion

slk ↪→ Ck =: V

which in turn gives

slk ↪→ V ⊗n

	

C[Sn]

which is injective for some k. Ideally, we would like a braid group

action instead of a Sn-action77. 77 This would allow us to, in some
sense, distinguish between the elemen-

tary pieces. A symmetric group action
identifies the first two.
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So how do we get a braid group action? They arise naturally from

the Yang-Baxter equations, which leads us to the study of quantum

groups. As an analogue of our inclusions above, in this case we get

Uq(slk(C)) ↪→ (Vq)
⊗n 	

Cq[Sn]

where Vq := C(q). We denote the Hecke Algebra Cq[Sn] by H(Sn).

Letting Ik be the kernel of the action of Hq(Sn), we can take the

quotient78 78 Braid relations

T 2
i = 1 + (q−1− q)TiCq[Sn]/Ik

Example. In the case k = 2, n ≥ 2,

Hq(Sn)/Ik = Hq(Sn)/

〈∑
ω∈S2

qTω

〉

Presentation: We can come up with new generators given by

Ci := Ti + q

which will then satisfy relations

C2
i = (q + q−1)Ci = [2]Ci

where [2] is the q-analogue79. 79 Note that, in general specializing to
q = 1 will yield a factor of k in this

position.CiCj = CjCi |i− j| > 1

CiCjCi = Ci |i− j| = 1

An we have a correspondence between these generators and the dia-

grams

Ci

1 2 ni i+ 1

· · · · · ·

And can assign to the cup and the cap the (co)unit

∩ : V ∗ ⊗ V → C(q)

∪ : C(q) → V ⊗ V ∗

1 7→ v0 ⊗ v1 + qv1 ⊗ v0

where V is generated by v0 and v1.

If we set

T−1
i Ti
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then we get the skein relations:

= − q

and

= − q−1

So, how do we now go about finding invariants for a link/braid? In

our diagram from the beginning80, we can see that the assignments 80 We can do much the same for a

braid, for instance, assigning to the
braid

a morphism V ⊗3 → V ⊗3.

from the example give us a morphism f :

C(q)

V ⊗4

V ⊗4

V ⊗4

C(q)

f

In this case, we find that f(1) is simply the Jones polynomial.

To do this more generally we a category with additional struc-

ture81, for example, relations like: 81 More precisely, we need a braided

monoidal category with left and right
duals that are canonically isomorphic,

and some move invariances.=

Example. We can compute invariants of the unknot. By breaking it

into a cup and a cap, we get a morphism

C(q) → V ⊗ V → C(q)

1 7→ qv1 ⊗ v0 + v0 ⊗ v1 7→ [2]

So that 1 is sent to the quantum dimension of V 82. 82 Just as

2 = dimC[X]/(X2)

We have

[2] = q + q−1 = qdim(C[X]/(X2))〈1〉

where deg(X) = 2.

Now fix V = C(q)2 with basis {v0, v1} = {∨,∧}. We can write down

two bases for V ⊗n

Fixed points basis/Standard basis

i1i2 · · · in = i1 ⊗ i2 ⊗ · · · ⊗ in ij ∈ {∨,∧}

Attracting cells basis/KL-basis denoted i1i2 · · · in. The

procedure for computing this basis is as follows
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• take i1i2 · · · in, and write it as

∨ ∨ ∨ ∨ ∨ ∨∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

by connecting pairs ∨∧.

• Get a morphism φ : V ⊗k → V ⊗n.

• leave out the ik which are connected by cups in i1i2 · · · in to get
̂i1i2 · · · in. Then take

i1i2 · · · in := φ( ̂i1i2 · · · in) ∈ V ⊗n

We say a fixed point (basis vector) v appears in (the closure of) an

attracting cell (basis vector) b if v has non-trivial coefficient when b is

expanded in the standard basis.

Remark. w appears in b if and only if w (a sequences of ∧’s and ∨’s)

and b (A cup diagram) is oriented with the fixed number of ∧’s. In

such a diagram, the degree equals the exponent of q.

Example. Let

X = P1(C) = {L ⊂ C2} = SL(2,C)/

(
∗ ∗
0 ∗

)

which admits an action of T =

(
t 0

0 t−1

)

If C2 = 〈e1, f1〉, we get fixed points 〈e1〉 = L1 and 〈f1〉 = L1. For p

a fixed point of T , we can consider

Ap :=
{
x ∈ x | lim

t→0
T.x = p

}
and compute:

T.[a, b] = [ta, t−1b] = [t2a, b]
t→0−→ [0, b] = [0, 1] = 〈f1〉

So, for b 6= 0,

A〈f1〉 = A[0,1] = P1

A〈e1〉 = A[1,0] = 〈e1〉 = [0, 1]
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Theorem (Khovanov, Brundan-S.). Fix n, fix r := #∧’s. Consider

the graded vector space

Br,n :=
{
aλb |

a=a1a2···an
b=b1b2···bn
λ=λ1λ2···λn

}
Such that λa,

λ
b oriented. Then there is a graded algebra structure on

Br,n with primitive idempotents being the degree 0 elements λλλ.

Remark.
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